Variability in quantitative analysis of atherosclerotic plaque inflammation using 18F-FDG PET/CT
نویسندگان
چکیده
BACKGROUND 18F-FDG-PET(/CT) is increasingly used in studies aiming at quantifying atherosclerotic plaque inflammation. Considerable methodological variability exists. The effect of data acquisition and image analysis parameters on quantitative uptake measures, such as standardized uptake value (SUV) and target-to-background ratio (TBR) has not been investigated extensively. OBJECTIVE The goal of this study was to explore the effect of several data acquisition and image analysis parameters on quantification of vascular wall 18F-FDG uptake measures, in order to increase awareness of potential variability. METHODS Three whole-body emission scans and a low-dose CT scan were acquired 38, 60 and 90 minutes after injection of 18F-FDG in six rheumatoid arthritis patients with high cardiovascular risk profiles.Data acquisition (1 and 2) and image analysis (3, 4 and 5) parameters comprised:1. 18F-FDG uptake time, 2. SUV normalisation, 3. drawing regions/volumes of interest (ROI's/VOI's) according to: a. hot-spot (HS), b. whole-segment (WS) and c. most-diseased segment (MDS), 4. Background activity, 5. Image matrix/voxel size.Intraclass correlation coefficients (ICC's) and Bland Altman plots were used to assess agreement between these techniques and between observers. A linear mixed model was used to determine the association between uptake time and continuous outcome variables. RESULTS 1. Significantly higher TBRmax values were found at 90 minutes (1,57 95%CI 1,35-1,80) compared to 38 minutes (1,30 95%CI 1,21-1,39) (P = 0,024) 2. Normalising SUV for BW, LBM and BSA significantly influences average SUVmax (2,25 (±0,60) vs 1,67 (±0,37) vs 0,058 (±0,013)). 3. Intraclass correlation coefficients were high in all vascular segments when SUVmax HS was compared to SUVmax WS. SUVmax HS was consistently higher than SUVmax MDS in all vascular segments. 4. Blood pool activity significantly decreases in all (venous and arterial) segments over time, but does not differ between segments. 5. Image matrix/voxel size does not influence SUVmax. CONCLUSION Quantitative measures of vascular wall 18F-FDG uptake are affected mainly by changes in data acquisition parameters. Standardization of methodology needs to be considered when studying atherosclerosis and/or vasculitis.
منابع مشابه
Systemic atherosclerotic plaque vulnerability in patients with Coronary Artery Disease with a single Whole Body [FDG]PET-CT scan
Objective(s): Cardiovascular disease is a leading cause of morbimortality with over half cardiovascular events occurring in the asymptomatic population by traditional risk stratification. This preliminary study aimed to evaluate systemic plaque vulnerability in patients with prior Coronary Artery Disease (CAD) with a single Whole Body [FDG] PET-CT scan in terms of plaq...
متن کاملFactors influencing the pattern and intensity of myocardial 18F-FDG uptake in oncologic PET-CT imaging
Introduction:Myocardial 18F-FDG uptake is highly variable in oncologic whole body 18F-FDG PET/CT studies, ranging from quite intense to minimal distribution. Intense or heterogeneous myocardial 18F-FDG uptake is undesirable as it may interfere with the visual or quantitative evaluation of tumoral invasion and metastases in pericardium, myocardiu...
متن کاملInflammation, Atherosclerosis, and Coronary Artery Disease: PET/CT for the Evaluation of Atherosclerosis and Inflammation
Atherosclerosis is a prevalent cardiovascular disease marked by inflammation and the formation of plaque within arterial walls. As the disease progresses, there is an increased risk of major cardiovascular events. Owing to the nature of atherosclerosis, it is imperative to develop methods to further understand the physiological implications and progression of the disease. The combination of pos...
متن کاملDetection of neovessels in atherosclerotic plaques of rabbits using dynamic contrast enhanced MRI and 18F-FDG PET.
OBJECTIVE The association of inflammatory cells and neovessels in atherosclerosis is considered a histological hallmark of high-risk active lesions. Therefore, the development and validation of noninvasive imaging techniques that allow for the detection of inflammation and neoangiogenesis in atherosclerosis would be of major clinical interest. Our aim was to test 2 techniques, black blood dynam...
متن کاملThe effect of incorporating the quantitative analysis besides visual assessments of 18F-FDG brain PET images for the localization of epileptogenic zones
Introduction: FDG Brain PET is a valuable paraclinical tool for presurgical assessments of patients suffering from refractory epilepsy. By the widespread accessibility of PET, recognizing the functional lesions has become a current practical method especially in preoperative evaluations of the partial epilepsy disorders. The aim of our study was to assess the impact of quantit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017